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LETTER TO THE EDITOR 

Linearization under non-point transformations 

L G S Duarte, I C Moreirat and F C Santos 
Instituto de FisidUFRJ-CP 68528 21945-170, Rio de Janeiro, Brazil 

Received IO August 1994 

Abstract. We find conditions for the 1inea-iw.tion of a second-order differential equation under 
non-point transformations. 

There has been some interest in the problem of determining when a given differential 
equation is equivalent to a linear differential equation L1-91. The utilization of point 
transformations for this kind of linearization is the usual and most useful procedure. This 
*ansformation preserves the integrability of the equation and its Lie symmetry structure. 
For example, the most general second-order differential equation which is equivalent to the 
free particle equation 

dZX/dTZ = 0 (1) 

has the form 

d2X/dt2 + A3(d~ /d t )~  + Az(dX/dt)’+ Aidx/dt + Ao(x, t )  = 0 (2) 

where the functions Ai@, t )  satisfy the following conditions: 

Ai,, - 2 A a r  + 3A3ir + 6A3Aox + ~ A o A ~ I - ~ A ~ A I L  - 3A1A3i - AzAlx + AzAv = 0 

(3) 

- AZU + 2A1xr - 3Aou + 6AoAsi + 3A3Aor - 3AoAa - 3AzAox - AiAzt + 2AiAlx = 0. 

(4) 

These conditions were firstly deduced by Tresse 191. The problem was also considered by 
Cartan I101 from a more geometrical point of view. The functions Ai are related to the 
invertible point transformations 

x = F ( x ,  t) 

T = G(x, t )  
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by the equations 

A3 = [GxFzz - GmFzIJH 

A2 = [GtFxz + 2GxF1.r -2FxGu - F I G ~ ~ I J H  

A I  = [ G ~ F I c  +2GtFrx -2fiGt.r - FxGtrI/H 

AO = [GrFtt - GnFrIJH 

(6) 

with H = GI F, - G, Ff # 0. The Tressexartan conditions (3) and (4) are the compatibility 
equations for the system (6) [5-9]. (There is a missing term in the expression (4-10) 
of 171). When we know the point transformation (5) the knowledge of the invariants, 
symmetries and solutions of (1) can be directly used to obtain the corresponding ones of the 
equivalent equation. As any second-order linear differential equation is equivalent to the 
free particle equation, (3) and (4) are necessary and sufficient conditions for the linearization 
of the second-order differential equation. This result is not true for systems of second-order 
equations or for higher-order differential equations; in these cases the ‘free particle’ equation 
is not equivalent to a general linear equation under a point transformation 12, l0-12]. 

In spite of the utility of the point transformations, they are special and restrictive 
transformations in the sense that they preserve the Lie symmetry structure beyond the 
integrability of the equation. However, in several situations we want only to know if the 
equation is an integrable one and, eventually, to find integrals of motion and solutions. There 
are some types of non-point transformations that preserve the time-independent integrals of 
motion of the original equation and, consequently, permit us to find classes of integrable 
equations starting from an integrable one. We can find several specific situations, spread 
through the scientific literature, where these transformations are employed for identifying 
integrals of motion and solving differential equations [13-151. We consider here the 
problem of  finding the class of second-order equations that are equivalent under a non- 
point transformation (NPT) to the free particle equation ( 1 ) .  

We start with the NPT 

X = F ( x , t )  

dT = G(x, t )d t  
(7) 

which is a generalization of the transformation originally proposed by Sundman (1912), and 
apply it to the equation (1). We get the following equation: 

d2X/dtZ + Az(dX/d?)’ + Al(dr/dt) + Ao = 0 (8) 

where 

A2 = [GFx.r - F.GzI/K 

Ai = [2GF,, - FtG, - FxGt]/K 

AO = [GFtt - F,G,I/K 

(9) 

with 

K = GF, # 0. 

A procedure of systematic derivations of the equations (9). by using algebraic 
computation, permits us the elimination of the functions F ,  G and their derivatives and 
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to find the compatibility conditions, analogous to the Tressdartan conditions (3) and (4). 
These conditions lead to the following possibilities: 

(1) 

SI (x, t )  = AI, - 2Azr = 0 

Sz(X, t )  = 2Aoxx - 2A1ix + 2AoAz.r - A I ~ A I  + 2AozAz + 2Azrr = 0. 

(10) 

(11) 

(ii) If SI ( x ,  t )  # 0 and SZ(X. a )  # 0 then 

S,’ + 2SitSz - 2S;Aii + 4S;AoX + 4S:AoAz - 2SiSzt - STA: = 0 (12) 

and 

S1,Sz + S:AI, - 2S:Azr - S l S b  = 0. (13) 

An invariant I for the equation (8). when the conditions (10) and (11) or (12) and (13) 
are satisfied, can be found directly from the invariant I = dX/dT of equation (1): 

I = dX/dT = (F,/G)(dx/dt) + F,/G (14) 

if we know the explicit form of the NPT (7). Here we take three examples. 
(A) Consider the case (i) with AI,  = 2 A a  = C. We get, from (1 l), the condition 

Aoxx + (Aog)x - (C/2)[Cx + h + Aotl = 0 (15) 

and the equivalent equation 

d2x/dtz + [Ct/2 + g](dx/dt)’ + [Cx + h](dx/dt) + A. = 0 (16) 

where g = g(x) and h = h(t) are arbitrary functions. 

verifies, in this case, conditions (3) and (4). For example, the equation 
If C = 0, equation (16) can also be linearizable by a point transformation because it 

dZX/dtZ - (Z/x)(dx/dt)* + (zX/t2) = 0 

can be linearizable by the point transformation 

x =xtZ 

T = x / t  

or by the non-point transformation 

x = t3X312 

dT = tx5l2dt. 

From the invariant I = X - T(dX/dT) of (1) and from the point transformation (18), 
we get the following invariant for (17): 

11 = 3xzrz/[t(dx/dt) - X I .  (20) 
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Another invariant for the same equation can be found, for instance, from the invariant 
I = dX/dT and from the NPT (19): 

I ,  = (t/x)[(r/2x)(dx/dr) + 11. (21) 

If we start with the invariant I = dX/dT, the point transformation (18) leads to the invariant 

We observe that, in this case, unlike the general situation, the NPT (19) preserves the Lie 

(B) Now take the equation 

I3 = 1112/3. 

symmetry structure of the original equation (I). as the point transformation always does. 

d2x/dtZ + ( t  - I/x)(dx/dt)' + 2x(dr/dt) + x 2 / r  - x / t Z  = 0. (22) 

It can be easily verified that (22) satisfies the conditions (12) and (13). Therefore, it is 
equivalent to (1). The NPT relating (1) and (22) has the form 

F = ex' 

G = x t .  

From (14) and (B), we find that (22) has the invariant 

I =ex'[(dr/dt)(l/x) + l /t] .  

(C) If we start from a given NPT 

F = t sin(x) 

G = x i  

for example, we get the following equation: 

d2x/dtZ - [tan(x) + I / x ] ( d ~ / d t ) ~  + [ l / t  - tan(x)/xr](dx/dr) - tan(x)/t2 = 0. (26) 

Of course, conditions (12) and (13) are verified in this case and, from (14). an invariant of 
(26) is 

I = [(dx/dr)tcos(x) + sin(x)l/xt. (27) 

In spite of the complicated form of the conditions (lo), (1 1) and (12) it is easy to check, 
with the help of a computer, if a given second-order differential equation can be reduced 
to ( I )  under NPT with the form (5).  This method can be extended for getting the class of 
equations that are equivalent to a general linear equation. Of course, in the general case, 
it is difficult to solve the system of -equations for finding the NPT joining two equivalent 
differential equations. But now we have a general algorithmic procedure for analysing the 
equivalence under NPT of given ordinary differential equations. 

We would like to thank the referee for some useful comments 
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